How to Use Vultr Cloud Inference in Python with Langchain

Updated on April 22, 2024
How to Use Vultr Cloud Inference in Python with Langchain header image

Introduction

Vultr Cloud Inference allows you to run inference workloads for large language models such as Mixtral 8x7B, Mistral 7B, Meta Llama 2 70B, and more. Using Vultr Cloud Inference, you can run inference workloads without having to worry about the infrastructure, and you only pay for the input and output tokens.

This article demonstrates step-by-step process to start using Vultr Cloud Inference in Python with Langchain.

Prerequisites

Before you begin, you must:

Set Up the Environment

Create a new project directory and navigate to the project directory.

console
$ mkdir vultr-cloud-inference-python-langchain
$ cd vultr-cloud-inference-python-langchain

Create a new Python virtual environment.

console
$ python3 -m venv venv
$ source venv/bin/activate

Install the required Python packages.

console
(venv) $ pip install langchain-openai

Inference via Langchain

Langchain provides a Python SDK to run inference workloads for Vultr Cloud Inference. You can use the langchain-openai package to make the API calls.

Create a new Python file name inference_langchain.py.

console
(venv) $ nano inference_langchain.py

Add the following code to inference_langchain.py.

python
import os
from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage, SystemMessage

api_key = os.environ.get('VULTR_CLOUD_INFERENCE_API_KEY')

# Set the model
# List of available models: https://api.vultrinference.com/v1/chat/models
model = ''
messages = [
    HumanMessage(content="What is the capital of India?"),
]

client = ChatOpenAI(openai_api_key=api_key, openai_api_base='https://api.vultrinference.com/v1' model=model)
llm_response = chat.invoke(messages)

print(llm_response.content)

Run the inference-langchain.py file.

console
(venv) $ export VULTR_CLOUD_INFERENCE_API_KEY=<your_api_key>
(venv) $ python inference-langchain.py

Here, the inference_langchain.py file uses the langchain-openai package to run inference workloads for Vultr Cloud Inference. Langchain uses Langchain Expression Language (LCEL) for defining different types of messages such as HumanMessage and SystemMessage. For more information, refer to the Langchain documentation.

Conclusion

In this article, you learned how to use Vultr Cloud Inference in Python with Langchain. You can now integrate Vultr Cloud Inference into your Python applications that uses Langchain to generate completions for large language models.